9 resultados para Premature

em Cambridge University Engineering Department Publications Database


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Reliability of the measuring devices is very important problem. Optical fibre sensors are very efficient. The use of optical fibre sensors for monitoring the physical and chemical parameters has been expanding over resent years. These sensors are applied for monitoring the structural integrity of long, parallel lay synthetic ropes. Such ropes are corrosion free, however, their operational lifetime under cyclic load is not well understood and premature failure can occur due to slippage and breakage of yarns within the rope. The monitoring system has been proposed which is based on acoustic detection of yarn breakage. Monitoring the strain and temperature is performed using the array of fibre gratings distributed along the rope length.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite use of the best in current design practices, high-speed shaft (HSS) bearings, in a wind-turbine gearbox, continue to exhibit a high rate of premature failure. As HSS bearings operate under low loads and high speeds, these bearings are prone to skidding. However, most of the existing methods for analyzing skidding are quasi-static in nature and cannot be used to study dynamic operating conditions. This paper proposes a dynamic model, which includes gyroscopic and centrifugal effects, to study the skidding characteristics of angular-contact ball-bearings. Traction forces between rolling-elements and raceways are obtained using elastohydrodynamic (EHD) lubrication theory. Underlying gross-sliding mechanisms for pure axial loads, and combined radial and axial loads are also studied. The proposed model will enable engineers to improve bearing reliability at the design stage, by estimating the amount of skidding. © 2011 Published under licence by IOP Publishing Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon fibre-epoxy composite square honeycombs, and the parent composite material, were tested in quasi-static compression at a strain rate of 10 -3 s -1 and in dynamic compression at strain rates of 10 3-10 4 s -1 using an instrumented Kolsky bar arrangement. Taken together, these tests provide an assessment of the potential of this composite topology for use as a lightweight sandwich core. The honeycombs had two relative densities, 0.12 and 0.24, and two material orientations, ±45° and 0/90° with respect to the prismatic, loading direction of the honeycomb. Honeycomb manufacture was by slotting, assembling and bonding together carbon fibre/epoxy woven plies of composite sheets of 2 × 2 twill weave construction. The peak value of wall stress in the honeycombs was about one third that of the parent material, for all strain rates. An elastic finite element analysis was used to trace the source of this knock-down in strength: a stress concentration exists at the root of the slots and leads to premature failure by microbuckling. Shock-wave effects were evident at impact velocities exceeding 50 ms -1 for the honeycomb of relative density 0.12. This was traced to stubbing of the buckled cell walls against the face of the Kolsky bar. © 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present planar mesa termination structure with high k dielectric Al2O3 for high-voltage diamond Schottky barrier diode. Analysis, design, and optimization are carried out by simulations using finite element technology computer-aided design (TCAD) Sentaurus Device software. The performances of planar mesa termination structure are compared to those of conventional field plate termination structure. It is found that optimum geometry of planar mesa terminated diode requires shorter metal plate extension (1/3 of the field plate terminated diode). Consequently, planar mesa terminated diode can be designed with bigger Schottky contact to increase its current carrying capability. Breakdown performance of field plate termination structure is limited at 1480 V due to peak electric field at the corner of Schottky contact (no oxide breakdown occurs). In contrast, peak electric field in planar mesa termination structure only occurs in the field oxide such that its breakdown performance is highly dependent on the oxide material. Due to Al2O3 breakdown, planar mesa termination structure suffers premature breakdown at 1440 V. Considering no oxide breakdown occurs, planar mesa termination structure can realize higher breakdown voltage of 1751 V. Therefore, to fully realize the potential of planar mesa terminated diode, it is important to choose suitable high k dielectric material with sufficient breakdown electric field for the field oxide. © 2013 Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon diffusion barriers are introduced as a general and simple method to prevent premature carbon dissolution and thereby to significantly improve graphene formation from the catalytic transformation of solid carbon sources. A thin Al2O3 barrier inserted into an amorphous-C/Ni bilayer stack is demonstrated to enable growth of uniform monolayer graphene at 600 °C with domain sizes exceeding 50 μm, and an average Raman D/G ratio of <0.07. A detailed growth rationale is established via in situ measurements, relevant to solid-state growth of a wide range of layered materials, as well as layer-by-layer control in these systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human cervix is an important mechanical barrier in pregnancy which must withstand the compressive and tensile forces generated from the growing fetus. Premature cervical shortening resulting from premature cervical remodeling and alterations of cervical material properties are known to increase a woman׳s risk of preterm birth (PTB). To understand the mechanical role of the cervix during pregnancy and to potentially develop indentation techniques for in vivo diagnostics to identify women who are at risk for premature cervical remodeling and thus preterm birth, we developed a spherical indentation technique to measure the time-dependent material properties of human cervical tissue taken from patients undergoing hysterectomy. In this study we present an inverse finite element analysis (IFEA) that optimizes material parameters of a viscoelastic material model to fit the stress-relaxation response of excised tissue slices to spherical indentation. Here we detail our IFEA methodology, report compressive viscoelastic material parameters for cervical tissue slices from nonpregnant (NP) and pregnant (PG) hysterectomy patients, and report slice-by-slice data for whole cervical tissue specimens. The material parameters reported here for human cervical tissue can be used to model the compressive time-dependent behavior of the tissue within a small strain regime of 25%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The environmental impact of diesel-fueled buses can potentially be reduced by the adoption of alternative propulsion technologies such as lean-burn compressed natural gas (LB-CNG) or hybrid electric buses (HEB), and emissions control strategies such as a continuously regenerating trap (CRT), exhaust gas recirculation (EGR), or selective catalytic reduction with trap (SCRT). This study assessed the environmental costs and benefits of these bus technologies in Greater London relative to the existing fleet and characterized emissions changes due to alternative technologies. We found a >30% increase in CO2 equivalent (CO2e) emissions for CNG buses, a <5% change for exhaust treatment scenarios, and a 13% (90% confidence interval 3.8-20.9%) reduction for HEB relative to baseline CO2e emissions. A multiscale regional chemistry-transport model quantified the impact of alternative bus technologies on air quality, which was then related to premature mortality risk. We found the largest decrease in population exposure (about 83%) to particulate matter (PM2.5) occurred with LB-CNG buses. Monetized environmental and investment costs relative to the baseline gave estimated net present cost of LB-CNG or HEB conversion to be $187 million ($73 million to $301 million) or $36 million ($-25 million to $102 million), respectively, while EGR or SCRT estimated net present costs were $19 million ($7 million to $32 million) or $15 million ($8 million to $23 million), respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical high voltage devices fabricated on SOI substrates suffer from a backside coupling effect which could result in premature breakdown. This phenomenon becomes more prominent if the structure is an IGBT which features a p-type injector. To suppress the premature breakdown due to crowding of electro-potential lines within a confined SOI/buried oxide structure, the partial SOI (PSOI) technique is being introduced. This paper analyzes the off-state behavior of an n-type Superjunction (SJ) LIGBT fabricated on PSOI substrate. During the initial development stage the SJ LIGBT was found to have very high leakage. This was attributed to the back and side coupling effects. This paper discusses these effects and shows how this problem could be successfully addressed with minimal modifications of device layout. The off-state performance of the SJ LIGBT at different temperatures is assessed and a comparison to an equivalent LDMOSFET is given. © 2014 Elsevier Ltd. All rights reserved.